Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(g2(f1(a), h2(a, f1(a)))) -> f1(h2(g2(f1(a), a), g2(f1(a), f1(a))))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(g2(f1(a), h2(a, f1(a)))) -> f1(h2(g2(f1(a), a), g2(f1(a), f1(a))))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F1(g2(f1(a), h2(a, f1(a)))) -> F1(h2(g2(f1(a), a), g2(f1(a), f1(a))))

The TRS R consists of the following rules:

f1(g2(f1(a), h2(a, f1(a)))) -> f1(h2(g2(f1(a), a), g2(f1(a), f1(a))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F1(g2(f1(a), h2(a, f1(a)))) -> F1(h2(g2(f1(a), a), g2(f1(a), f1(a))))

The TRS R consists of the following rules:

f1(g2(f1(a), h2(a, f1(a)))) -> f1(h2(g2(f1(a), a), g2(f1(a), f1(a))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.